Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel

نویسندگان

  • Michael D. Mulholland
  • David N. Seidman
چکیده

Nanoscale co-precipitation in a novel high-strength low-carbon steel is studied in detail after isothermal aging. Atom-probe tomography is utilized to quantify the co-precipitation of co-located Cu precipitates and M2C (M is any combination of Cr, Mo, Fe, or Ti) carbide strengthening precipitates. Coarsening of Cu precipitates is offset by the nucleation and growth of M2C carbide precipitate, resulting in the maintenance of a yield strength of 1047 ± 7 MPa (152 ± 1 ksi) for as long as 320 h of aging time at 450 C. Impact energies of 153 J (113 ± 6 ft-lb) and 144 J (106 ± 2 ft-lb) are measured at 30 C and 60 C, respectively. The co-location of Cu and M2C precipitates results in non-stationary-state coarsening of the Cu precipitates. Synchrotron-source X-ray diffraction studies reveal that the measured 33% increase in impact toughness after aging for 80 h at 450 C is due to dissolution of cementite, Fe3C, which is the source of carbon for the nucleation and growth of M2C carbide precipitates. Less than 1 vol.% austenite is observed for aging treatments at temperatures less than 600 C, suggesting that transformation-induced plasticity does not play a significant role in the toughness of specimens aged at temperatures less than 600 C. Aging treatments at temperatures greater than 600 C produce more austenite, in the range 2–7%, but at the expense of yield strength. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Controlled Thermo Mechanical Processing on the Properties of a High Strength Steel

In this paper, an ultra low carbon High Strength Low Alloy Grade Steel was subjected to a two-step forging process and this was followed by different post cooling methods. The highest strength was obtained at a faster cooling rate due to the highly dislocated acicular ferrite structure with the fine precipitation of microalloying carbides and carbonitrides. At a slow cooling rate, the strength ...

متن کامل

Enhancement of mechanical properties of low carbon steel based on heat treatment and thermo-mechanical processing routes

Thermal treatments and thermo-mechanical processing routes were applied on a conventional structural steel (st37 steel: 0.12C-1.11Mn-0.16Si) for improvement of tensile properties and enhancement of work-hardening behavior. Full annealing resulted in a sheet with coarse ferrite grains and pearlite colonies arranged alternatively in distinct bands, which showed high ductility, low strength, and t...

متن کامل

Investigation of microstructure and mechanical properties of low carbon steel sheets after severe plastic deformation in corrugation dies

Recently, bulk nano-structured materials produced by severe plastic deformation (SPD) have attracted scientists attention.  Materials produced by SPD are of great importance because of (1) non-porous structure, (2) great mechanical properties such as high strength and toughness and (3) proper dimension for mechanical and physical testing.  Several methods have been introduced for imposing the s...

متن کامل

Mechanical Behavior of TWIP Steel in High Strain Rate Torsional Test

Advanced high strength steels (AHSS) have recently attracted great attention because of their superior mechanical properties. A modern group of these steels, known as twinning induced plasticity (TWIP) steels, shows a unique combination of strength and ductility even at high rates of strain. In order to examine the functionality of such steels in dynamic loading conditions, their mechanical beh...

متن کامل

The Effect of Carbon Nanoparticles and Calcined Alumina on Mechanical Properties and Corrosion Resistance Behavior of the Magnesia Carbon Refractories

Nowadays, magnesia carbon refractories are very important for the iron and steel industries. It is due to their unique properties, such as low wet ability with melt iron and steel. Therefore, it is important to extend the life of the refractory. In this research, the effect of calcined alumina and nano carbon on mechanical strength and corrosion resistance against slag in magnesia carbon refrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010